-----------------------------
Gibt es den Weihnachtsmann?
1. Keine bekannte Spezies der Gattung "Rentier" kann fliegen. Aber es gibt 300.000 Spezies von lebenden Organismen, die noch klassifiziert werden müssen, und obwohl es sich dabei hauptsächlich um Insekten und Bakterien handelt, schließt dies nicht mit letzter Sicherheit fliegende Rentiere aus, die nur der Weihnachtsmann bisher gesehen hat.
2. Es gibt 2 Milliarden Kinder (Menschen unter 18) auf der Welt. Aber da der Weihnachtsmann (scheinbar) keine Moslems, Hindus, Juden und Buddhisten beliefert, reduziert sich seine Arbeit auf etwa 15 % der Gesamtzahl - 378 Millionen Kinder (laut Volkszählungsbüro). Bei einer durchschnittlichen Kinderzahl von 3,5 pro Haushalt ergibt das 91,8 Millionen Häuser. Wir nehmen an, dass in jedem Haus mindestens ein braves Kind lebt.
3. Der Weihnachtsmann hat einen 31-Stunden-Weihnachtstag, bedingt durch die verschiedenen Zeitzonen, wenn er von Osten nach Westen reist (was logisch erscheint). Damit ergeben sich 822,6 Besuche pro Sekunde. Somit hat der Weihnachtsmann für jeden christlichen Haushalt mit braven Kindern 1/1000 Sekunden Zeit für seine Arbeit: Parken, aus dem Schlitten springen, den Schornstein runterklettern, die Socken füllen, die übrigen Geschenke unter dem Weihnachtsbaumverteilen, alle übrigen Reste des Weihnachtsessen vertilgen, den Schornstein wieder raufklettern und zum nächsten Haus fliegen. Angenommen, dass jeder dieser 91,8 Millionen Stops gleichmäßig auf die ganze Welt verteilt sind (was natürlich, wie wir wissen, nicht stimmt, aber als Berechnungsgrundlage akzeptieren wir dies), erhalten wir nun 1,3 Kilometer Entfernung von Haus zu Haus, eine Gesamtentfernung von 120,8 Millionen Kilometer, nicht mitberechnet die Unterbrechung für das, was jeder von uns mindestens einmal in 31 Stunden tun muss, plus Essen usw. Das bedeutet, das der Schlitten des Weihnachtsmannes mit 1040 km pro Sekunde fliegt, also der 3.000-fachen Schallgeschwindigkeit. Zum Vergleich: Das schnellste von Menschengebaute Fahrzeug auf der Erde, der Ulysses Space Probe, fährt mit lächerlichen 43,8 km pro Sekunde. Ein gewöhnliches Rentier schafft höchstens 24 km pro Stunde.
4. Die Ladung des Schlittens führt zu einem weiteren interessanten Effekt. Angenommen, jedes Kind bekommt nicht mehr als ein mittelgroßes Lego-Set (ca. 1 kg), dann hat der Schlitten ein Gewicht von 378.000 Tonnen geladen, nicht gerechnet der Weihnachtsmann, der übereinstimmend als übergewichtig beschrieben wird. Ein gewöhnliches Rentier kann nicht mehr als 175 kg ziehen. Selbst bei der Annahme, dass ein "fliegendes Rentier" (siehe Punkt 1) das zehnfach normale Gewicht ziehen kann, braucht man für den Schlitten nicht acht oder neun Rentiere. Man braucht 216.000 Rentiere! Das erhöht das Gewicht (den Schlitten nicht mitgerechnet) auf 410.400 Tonnen. Noch mal zum Vergleich: das ist das vierfache Gewicht von dem Hochseeluxuskreuzer Queen Elizabeth.
5. 410.400 Tonnen bei einer Geschwindigkeit von 1040 km/s erzeugen einen ungeheuren Luftwiderstand - dadurch werden die Rentiere aufgeheizt, genauso wie ein Raumschiff, das wieder in die Erdatmosphäre eintritt. Das vorderste Paar Rentiere muss dadurch 16,6 TRILLIONEN Joule Energie absorbieren - pro Sekunde - jedes der beiden!! Anders ausgedrückt: sie werden praktisch augenblicklich in Flammen aufgehen, das nächste Paar Rentiere wird den Luftwiderstand preisgeben, und es wird ein ohrenbetäubender Knall erzeugt. Das gesamte Team von Rentieren wird innerhalb von 5 Tausendstel Sekunden vaporisiert (in Atome zerlegt). Der Weihnachtsmann wird währenddessen einer Beschleunigung von der Größe der 17.500-fachen Erdbeschleunigung ausgesetzt. Ein 120 kg schwerer Weihnachtsmann (was der Beschreibung nach lächerlich wenig sein muss) würde an das Ende seines Schlittens genagelt - mit einer Kraft von 20,6 Millionen Newton.
Damit kommen wir zum Schluss:
WENN der Weihnachtsmann irgendwann einmal die Geschenke gebracht hat, dann ist er heute leider tot.